Implementasi K-Means untuk Melakukan Segmnetasi Produk Berdasarkan Data Transaksi Retail
Abstract
Retail companies are one form of business that has experienced significant development. Significant development can lead to many business competitors in the same field. Therefore, every company must be able to find strategies to get the attention of the target market. Fast service and good prices are included in the factors that influence customer interest in making transactions in the retail business. This research aims to classify products into several categories. The method used to perform segmentation is the data mining method with the K-Means algorithm and the elbow method to find the optimal number of clusters. The obtained results of many optimal clusters are 3, namely cluster 0, cluster 1, and cluster 2. The variable that has the most influence on cluster characteristics is the price variable, while the variable that has little influence on cluster characteristics is the quantity variable.
References
Ramadhanty, S. (2023). Aprindo Ungkap Pertumbuhan Ritel Nasional Hingga Tutup Tahun 2023 Bisa Capai 4,2%. Diakses tanggal 29 Juli 2024 dari https://industri.kontan.co.id/news/aprindo-ungkap-pertumbuhan-ritel-nasional-hingga-tutup-tahun-2023-bisa-capai-42
Fithriyah, M. (dkk). (2021). K-Means Clustering Untuk Segmentasi Produk Berdasarkan Analisis Recency, Recency, Recency (RFM) pada Data Transaksi Penjualan. ILKOMNIKA : Journal of Computer Science and Applied Informatics, 3(2), 151-164.
Harani, N. (dkk). (2020). Segmentasi Pelanggan Produk Digital Service Indihome Menggunakan Algoritma K-Means Berbasis Python. Jurnal Manajemen Informatika (JAMIKA), 10(2), 133-146.
Amna. (dkk). (2023). DATA MINING. Padang: PT GLOBAL EKSEKUTIF TEKNOLOGI.
Rahayu, P. (dkk). (2024). Buku Ajar Data Mining. Jambi: PT. Sonpedia Publishing Indonesia.
Astuti, S. (2020). ALGORITMA K-MEANS DALAM MENENTUKAN PENERIMA BEASISWA UPZ (Unit Pengumpulan Zakat) PADA MAHASISWA UIN SUMATERA UTARA MEDAN. Tugas Akhir Sarjana. FAKULTAS SAINS DAN TEKNOLOGI UIN SUMATERA UTARA.
Salsabila, N. (2019). KLASIFIKASI BARANG MENGGUNAKAN METODE CLUSTERING & K-MEANS DALAM PENENTUAN PREDIKSI STOK
BARANG. Tugas Akhir Sarjana. FAKULTAS SAINS DAN TEKNOLOGI UIN MAULANA MALIK IBRAHIM.
Achray, A. (2020). Implementasi Algoritma K-Means untuk Menentukan Mengelompokkan Data Penjualan Mobil di PT Honda Arista Mangga Dua. Tugas Akhir Sarjana. FT UNIVERSITAS SATYA NEGARA INDONESIA.
Rahman, S. (dkk). (2023). PYTHON : DASAR DAN PEMROGRAMAN BERORIENTASI OBJEK. PENERBIT TAHTA MEDIA GROUP.
Harani, N. Nugraha, F. ( 2020). Segmentasi Pelanggan Menggunakan Python. Bandung: Kreatif Industri Nusantara.
Sunyoto, D. Mulyono, A. (2021). MANAJEMEN BISNIS RITEL. Purbalingga: CV. EUREKA MEDIA AKSARA.
Wijaya, K. (dkk). (2021). Segmentasi Pelanggan Menggunakan Algoritma K-Means dan Analisis RFM di Ova Gaming E-Sports Arena Kediri. JURNAL TEKNIK ITS, 10(2), 230-237.
Awalina, E. Woro Isti Rahayu. (2023). Optimalisasi Strategi Pemasaran dengan Segmentasi Pelanggan Menggunakan Penerapan K-Means Clustering pada Transaksi Online Retail. Jurnal Teknologi dan Informasi (JATI), 13(2), 122-137.
Fakhriza, M. Khaerul Umam. (2021). Analisis Produk Terlaris Menggunakan Metode K-Means Clustering Pada PT. Sukanda Djaya. JIKA (Jurnal Informatika), 5(1), 8-15.
Yansah, H, (dkk). (2022). Penerapan Algoritma K-Means Dalam Clustering Produk Terlaris Pada Fr Parfum. SAKTI : Sains, Aplikasi, Komputasi dan Teknologi Informasi, 4(2), 83-90.
In order to be accepted and published by Journal Agribest, author(s) submitting the article manuscript should complete all the review stages. By submitting the manuscript the author(s) agreed to these following terms:
- The copyright of received articles shall be assigned to Journal Agribest as the publisher of the journal. The intended copyright includes the right to publish articles in various forms (including reprints). Journal Agribest maintain the publishing rights to the published articles.
- Authors are permitted to disseminate published article by sharing the link/DOI of the article at Journal Agribest. authors are allowed to use their articles for any legal purposes deemed necessary without written permission from Journal Agribest with an acknowledgement of initial publication to this journal.
- Users/public use of this website will be licensed to Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.